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Comparative study of the accuracy of an implant intraoral
scanner and that of a conventional intraoral scanner for

complete-arch fixed dental prostheses
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ABSTRACT
Statement of problem. Most of the available digital systems are designed to image teeth and soft
tissue rather than dental implants. However, although some are marketed specifically to record
implant position, whether these products are better for implant scanning is unclear.

Purpose. The purpose of this in vitro study was to compare the accuracy of an implant intraoral
scanner (PiC camera) with that of an intraoral scanner (TRIOS3) for 6 implants placed in
completely edentulous arches.

Material and methods. Two maxillary master models with 6 external hexagonal Ø5.1-mm implants
were used, one with parallel and the other with angled implants. The reference values were
obtained with a coordinate measuring machine. Ten scans were made per model (parallel and
angled) and system (intraoral and implant) (n=10), after which the 3-dimensional coordinates for
each implant were determined with a computer-aided design software program and compared
with the linear and angular reference values. Statistical significance was determined with the
Student t test (a=.05).

Results. Statistically significant differences (P<.001) were found in both precision and trueness. The
overall errors relative to the reference in the parallel implant-supported casts based on the implant
scanner were 20 mm (P=.031) and 0.354 degrees (P=.087) compared with 100 mm (P<.001) and 1.177
degrees (P<.001) in the cast based on conventional digital scans. The global errors in the angled
implant casts were 10 mm (P=.055) and 0.084 degrees (P=.045) for the implant digital scans and
23 mm (P=.179) and 0.529 degrees (P<.001) for the conventional digital scans.

Conclusions. The implant intraoral scanner delivered greater precision and trueness than the
conventional instrument for imaging complete-arch implant-supported prostheses. (J Prosthet
Dent 2021;-:---)
Implant-supported dental
prostheses have been used
successfully for decades to
treat partially or completely
edentulous patients.1 An
essential consideration when
preparing prosthetic frame-
works with a passive fit to the
implants is their accuracy.2-4

Tolerances of 10 mm to 150
mm have been proposed as
acceptable discrepancies for
defining passive fit,4-11 with
the present consensus for
complete-arch FDPs ranging
between 50 mm and 100 mm.2

For implant-supported
fixed prostheses, digital scan-
ning systems must deliver
suitable accuracy to ensure the
reliability of the images recor-
ded. Accuracy can be deter-
mined by precision, defined as
the variation under specific

conditions between different scans of the same object
and by trueness, defined as the degree of agreement
between the value measured and the actual dimensions
of the object.12-14
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Clinical Implications
The implant intraoral scanner appears to deliver
more accurate implant imaging than conventional
intraoral scanners in edentulous arches, especially in
terms of precision. Conventional intraoral scanners
showed greater deviations, with values sometimes
beyond the accepted clinical range, which might
lead to misfit in complete-arch implant-supported
fixed dental prostheses.
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microscopy.15-18 The most modern systems scan in color
and need no powder,7 while some feature telecentricity
in the scan field of the target object.17 One possible
problem with intraoral scanners (IOSs) is that the small
wand size necessitates subsequent stitching of the fields
scanned, a procedure prone to accumulating er-
rors.10,12,19-29 That is particularly the case for large
edentulous spaces where there are fewer references for
stitching fields. Nevertheless, this is not the only factor
that can affect the accuracy of dental scans.5,29-54

Extraoral scanners have been designed and marketed
specifically for scanning implant positions in which
interimplant distances and angles are calculated as vec-
tors. These scanners avoid the need to stich the images,
thereby lowering the likelihood of error.55,56 As such
systems require an implant as a reference, they are not
suitable for single implants,57 and as they image neither
teeth nor soft tissue, additional conventional impressions
or intraoral scans are required and the data files subse-
quentlymerged digitally to generate the definitive cast.55-61

This study compared the accuracy, trueness, and
precision of the coordinates for 6 implants in 2
completely edentulous arches (one with parallel and the
other with angled implant replicas) recorded by an
implant (iIOS) and a conventional IOS with the respec-
tive reference measurements determined by a coordinate
measuring machine (CMM). The null hypothesis was
that the trueness and precision of the longitudinal and
angular measurements made with the 2 systems and
those recorded with CMM in either the parallel or angled
implant casts would be similar.

MATERIAL AND METHODS

Six Ø5.1-mm external hexagon implant analogs (ref. IPD/
BA-AW-00; Implant Protesis Dental 2004 SL) were
screwed onto 2 maxillary arch acrylic resin master models
at the lateral incisor, first premolar, and first molar po-
sitions. One cast was designed with parallel (PIMP,
0 degrees angle) and the other with angled (AIMP)
(Fig. 1) implants with the first right molar 20 degrees
distally; the first right premolar, 10 degrees mesially; the
lateral right incisor, 0 degrees; the lateral left incisor,
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0 degrees; the first left premolar, 15 degrees mesially; and
the first left molar, 30 degrees distally.

The reference coordinates for calculating interimplant
distances and angulations were measured under
controlled conditions (21.3 �C, 37.9% humidity) using a
CMM (Global Evo 09.15.08, serial No. 906; Hexagon
Manufacturing Intelligence). Lighting conditions were
not taken into account because it was a tactile device. The
head type was Hexagon HH-AS8-T2.5 with a sensor type
TP200 and a Ø0.5-mm ruby stylus. The machine settings
and calibration were as expressed in UNE EN ISO10360-
2:2010.62 The measurements of the coordinates of the 6
implants in each cast were carried out directly on the
implant platform, without any type of abutment. The axis
of the implant replica was obtained with the CMM
sensor by contacting the external circumference of the
implant replica at 3 different points. After that, using the
same approach, the CMM found the references of the
implant replica connection plane. The intersection be-
tween the implant replica connection plane and its
circumferential axis, which is perpendicular to the same
plane, gives the center point of that implant replica. The
coordinates of the 6 center points were calculated by the
CMM’s software program based on a center coordinate
system chosen by the operator. The maximum permitted
longitudinal error was defined as 1.3+3L/1000 mm.

Ten scans (n=10) were recorded per cast and imaging
system, based on previous studies with similar experi-
mental designs and supported by a sample size calcula-
tion.12,63 The Student t test (G*power v.3.1; Universität
Düsseldorf) was used for analysis power for (n=10 ×15)
for a normalized size of the effect of 0.5 (Cohen effect
size), providing a power of 0.85 at a=.05.

The IOS (TRIOS 3 v.1.4.7.5.3; 3Shape A/S) was used
by the same experienced operator (A.S.) throughout.
Scanning was consistently begun at the implant in the
first maxillary right molar position. The IOS was cali-
brated before starting the scanning session by following
the manufacturer instructions. Six high-precision scan
bodies (Elos Accurate IO Scan; Elos Medtech AB) were
used (Fig. 2). This confocal microscopyebased IOS system
features high-speed scanning (3000 images per second)
and visible white light that beams oscillating illumination
on the object. Major advantages include that the system
recognizes variations in the focal plane across a range of
plane positions while maintaining a fixed spatial rela-
tionship with the object imaged and that powder is not
required.15-18 The software program then converted the
information collected into a 3-dimensional surface.

The iIOS (PiC Camera; PiC Dental) used was fitted
with an extraoral, 2-charge-coupled device camera that
located implant positions with white polka-dotted black
transfer abutments (PiC transfer; PiC dental) (Fig. 3). The
camera was configured to make 50 to 60 photographs in
2 dimensions per each pair of implants at a speed of 64
Sallorenzo and Gómez-Polo



Figure 1. Master models. A, Parallel implant cast (PIMP). B, Angled implant cast (AIMP).

Figure 2. Cast with parallel implants and scan bodies. Figure 3. Parallel implant cast with PiC abutments (iIOS system). iIOS,
implant intraoral scanner.
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images/s to determine their position.55 As for the IOS,
the iIOS was calibrated before the scanning session. The
abutments were screwed onto the implants at the
manufacturer-recommended torque of 15 Ncm in the
same order in the 2 casts. Scanning was preceded by
entering the implant brand and diameter and the serial
number of each abutment. Three implants were marked
as references before the scanning procedure as required
by the software program of the iIOS system. These im-
plants references were independent of the reference
system used during the analysis phase with the reverse
engineering software program (Geomagic; 3D Systems).
Scanning was conducted by the same experienced
operator (A.S.) with the camera at a distance of 15 cm to
30 cm, and the images for the 2 groups were subse-
quently exported in standard tessellation language (STL)
format. In both iIOS and IOs scanning sessions, the
ambient conditions were controlled, with a temperature
of 21.5 �C and room lighting of 1000 lux, as suggested in
a previous study.49 The implants were digitally splinted
with a virtual Ackerman bar designed for each scan with
a software program (exocad v.2.2; Align Technology). The
Sallorenzo and Gómez-Polo
aim was to export this design to a 3-dimensional analysis
software program (Geomagic; 3D Systems) to determine
the coordinates of the center of the connection surface of
each implant. The center point was obtained from the
intersection of the symmetry axis of each implant (ob-
tained from the cylinders of the Ackerman bar),
perpendicular to a plane that included the implant
connection surface. Subsequentially, a vector perpen-
dicular to the same plane was generated, in which a
random point was chosen, having 2 points for each
vector. The next step was to define the implant in the first
maxillary right molar position as the origin of the co-
ordinates, corresponding to the starting point of the IOS
scan (Fig. 4). Based on the new origin of the 3-
dimensional system, the coordinates (x, y, and z) of the
12 points of the 6 implants were determined. This
methodology was selected to capture the cumulative
potential errors registered during the scanning stitching
process.

The coordinates were exported to a spreadsheet
(Microsoft Excel; Microsoft Corp) used to calculate the
THE JOURNAL OF PROSTHETIC DENTISTRY



Figure 4. Determination of coordinates for center of each implant
relative to maxillary right molar position with Geomagic software
program.

Figure 5.Measurements made to analyze linear deviations. IMP, implant.
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distances and convert the angles from radians to degrees
with the following equations:

D=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxa−xbÞ2+

�
ya−yb

�2+ðza−zbÞ2q

a= tan−1

ffiffiffiffiffiffiffiffiffiffiffiffi
x2v+y2v
z2v

s

All the possible combinations (15) of interimplant
linear and angular deviations were analyzed in each scan
(Fig. 5).

For the assessment of trueness, statistical analysis of
the findings was conducted with the 95% significance
paired-sample Student t test. All the measurements were
compared with the CMM reference values. For the
assessment of precision, the variance of distance and
angular errors between the CMM scans and digital casts
of the 2 systems under consideration was analyzed by
means of the quadratic Levene test based on ANOVA.
Specifically, tests of the variance were performed to
establish the value and significance of precision, which
was associated with the standard deviation of distance
and angular errors. A software package (MATLAB R2019;
MathWorks) was used for the analysis.

RESULTS

PIMP cast trueness was studied by comparing the mean
error obtained for the 10 scans performed per cast type
with the CMM reference values. The iIOS generated
fewer distance and angulation errors than the IOS
(Table 1, Fig. 6). The overall errors observed with iIOS
were 20 mm (P=.031) and 0.354 degrees (P=.087) versus
the reference measurements. The analogous values for
the IOS system were 100 mm (P<.001) and 1.177 degrees
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(P<.001). The differences were smaller for the AIMP cast,
with global errors for iIOS of 10 mm (P=.055) and 0.084
degrees (P=.045) and for IOS of 23 mm (P=.179) and
0.529 degrees (P<.001) when compared with the refer-
ence measurements.

Precision for the PIMP cast, measured in terms of the
standard deviations for the 10 scans performed, was
lower for IOS than for iIOS, with standard deviation
ranging over wider intervals in the IOS for both linear
(±292 mm) and angular (±0.474 degrees) distances. The
respective values observed for iIOS were ±32 mm and
±0.280 degrees. From the Levene quadratic test, precision
was significantly better (P<.001) with the iIOS for linear
and angular deviations. Standard deviation was also
greater (±205 mm, ±0.841 degrees) for the IOS than for
the iIOS (±65 mm, ±0.246 degrees), P=.08 for linear and
P<.001 for angular distances.

The IOS standard deviation values for both types of
casts were significantly greater than the deviations
recorded for the reference, taking the center of the first
maxillary right molar as the origin (Table 2, Figs. 7, 8).
The variations between the iIOS and the reference values
were also statistically significantly different, although
more narrowly and to a different pattern. The error was
not distance dependent.

DISCUSSION

The results of the study led to rejection of the null hy-
pothesis that no statistically significant differences would
be found between the CMM-measured longitudinal and
angular distances and those obtained with IOS and iIOS.
Based on the precision of the 2 systems, the hypothesis
that they did not differ significantly was also rejected.

In spite of studies analyzing digital intraoral system
accuracy, the ongoing evolution of such systems, the
appearance of new technologies, and the variety of fac-
tors that may affect the end result all drive the pursuit of
further information on the subject. Such factors may be
intraoral (gingival thickness, oral mucosa and tongue
Sallorenzo and Gómez-Polo



Table 1.Mean error (mm and degrees), standard deviation, and statistical significance relative to CMM reference and statistical significance of
differences between 2 scanning systems (n=10)

Variable

iIOS-CMM IOS-CMM (iIOS-IOS) (Mean)
(iIOS-IOS)

(Standard Deviation)

Mean Standard Deviation P Mean Standard Deviation P P P

Distance (mm) Parallel 20 32 .031 100 292 <.001 <.001 <.001

Angled 10 65 .055 23 205 .179 .480 .08

Angulation (degrees) Parallel 0.354 0.280 .087 1.177 0.474 <.001 <.001 <.001

Angled 0.084 0.246 .045 0.529 0.841 <.001 <.001 <.001

CMM, coordinate measuring machine; iIOS, implant intraoral scanner; IOS, intraoral scanner.
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movement, saliva, and blood) and environment- or
operator-, or system-related (wand, technology, and scan
bodies).30,31,48-52 However, studies that assessed factors
that may affect iIOSs are sparse. These extraoral devices
should be less sensitive to intraoral factors.55,56

Implant angulation affected precision and trueness to
a statistically significantly different extent in the 2 sys-
tems, although it was not the aim of this study to assess
the effect of angulation on the accuracy of the digital cast.
While another study reported different results,10 the
present findings are consistent with those of earlier
research that concluded that increased angulation might
facilitate scan body imaging.24,27,42,43,63

In a systematic review and meta-analysis of digital
scans and conventional impressions accuracy in implant
prostheses, Flügge et al10 reported that the mean devi-
ation in completely edentulous arches with parallel im-
plants and digital scan was 51.0 mm (confidence interval
[CI], 28.0 mm to 74.0 mm) and in partially edentulous
arches 11.0 mm (CI, 4.1 mm to 19.9 mm) and 0.4 degrees
(CI, 0.3 degrees to 0.4 degrees). The widest discrepancies
were reported for a single quadrant study, where mean
linear deviation for parallel implants was 304.0 mm (CI,
278.6 mm to 320.4 mm) and angular deviation 1.6 degrees
(CI, 1.3 degrees to 1.9 degrees), whereas for angled im-
plants (21 to 45 degrees), linear deviation was 158.0 mm
(CI, 102.8 mm to 213.2 mm) and angular deviation 1.2
degrees (CI, 0.8 degrees to 1.7 degrees). The authors of a
study of implant scans for completely edentulous arches
reported linear deviations of greater than 170 mm and
angular deviations greater than 0.5 degrees in all the
scanners and techniques analyzed.32

Any comparison between the present and earlier
studies must consider the lack of uniformity in the meth-
odologies used, in spite of the similarity of the objectives
pursued. Some studies reported smaller discrepancies,
suggesting that certain IOSs were suitable for scanning
completely edentulous arches with 4 to 6 implants.7,44 The
differences between the present and earlier findings may
be because of variations in the methodology used in terms
of master model or mesh overlap measurements, inter-
implant distance and angulation, absence of fixed refer-
ence points, or oral mucosa anatomy and texture.5

The iIOS system studied here exhibited mean errors
lower than the clinically acceptable thresholds of 100 mm
Sallorenzo and Gómez-Polo
for linear and 0.40 degrees for interimplant angular de-
viations.2,5 However, the mean angulation error observed
for the intraoral scanner was higher than the reference,
and linear deviation exceeded the ceiling for precision
although not the accuracy limit.
THE JOURNAL OF PROSTHETIC DENTISTRY



Table 2. Reference angles (degrees) and distances (mm) obtained from CMM from center of coordinate system (IMP1), interimplant mean distance
errors (mm) (IMP), and statistical significance relative to reference measurements (n=10)

Cast
CMM

Angles (Degrees)
CMM

Distance (mm)

iIOS IOS

Mean (mm) Standard Deviation (mm) P Mean (mm) Standard Deviation (mm) P

PIMP IMP1 0 0 0 0 <.001 0 0 <.001

IMP2 0.27 16.83 75 16 <.001 265 217 .003

IMP3 0.39 29.42 72 16 <.001 370 258 <.001

IMP4 0.46 42.15 122 19 <.001 337 272 .004

IMP5 0.35 43.84 111 14 <.001 372 290 .003

IMP6 0.23 45.73 88 18 <.001 785 505 <.001

AIMP IMP1 0 0 0 0 <.001 0 0 <.001

IMP2 29.97 16.83 94 12 <.001 55 67 <.001

IMP3 20.01 29.38 103 7 <.001 72 79 <.001

IMP4 20.04 42.08 141 7 <.001 107 81 <.001

IMP5 35.05 43.75 100 6 <.001 46 139 .003

IMP6 9.90 45.63 124 12 <.001 188 455 .040

AIMP, angled implant cast; CMM, coordinate measuring machine; iIOS, implant intraoral scanner; IMP, implant replica; IOS, intraoral scanner; PIMP, parallel implant cast.
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Errors in intraoral scanning have been reported
to increase with interimplant distance because of
image stitching.10,12,19-21,23-29 That observation was
THE JOURNAL OF PROSTHETIC DENTISTRY
consistent with the present findings for IOS in
which, while all interimplant distances differed
significantly from the CMM measurements, the
Sallorenzo and Gómez-Polo
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difference widened with distance from the implant
defined as the origin.

Proposals to address increased interimplant distance
have been made, including altering the edentulous sur-
face to increase the number of reference points for the
scanner with techniques such as using an artificial glass
pearl reference, splinting the scan bodies, or marking
the surface with a mix of pressure-indicating paste and
zinc-eugenol cement.29,33-36 Nevertheless, the use of
IOS for imaging fully edentulous arches remains
controversial.5,10,45,51,53,54

Limitations of this study include its in vitro design
that did not fully replicate the clinical conditions,
including mucosa or tongue mobility or the presence of
saliva, which could affect system accuracy, particularly in
the case of the intraoral scanner where the impact of
image overlap is greater.5,37-39 Discrepancies have been
reported to be greater and precision lower in clinical
studies than in in vitro studies for all the instruments
analyzed, including the TRIOS 3.41 Other authors
comparing intraoral and extraoral scans reported up to
double the error in the clinical as in the in vitro (25 mm
versus 50 mm) evaluation, in all likelihood attributable to
moisture, patient movement, and limited oral space.37

The oral mucosa may also change shape during scan-
ning operations, further hindering image processing.7

Additional in vitro and clinical studies are needed to
corroborate these findings and their clinical implications,
as well as to assess factors that may impact both systems.

CONCLUSIONS

Based on the findings of this in vitro study, the following
conclusions were drawn:

1. Wider distance and angular deviations (P<.001)
were observed in the cast with parallel implants in
both imaging systems. Therefore, angulation would
appear to favor accuracy.

2. The iIOS system delivered more accurate values
than IOS, particularly in terms of precision (P<.001),
except in distance deviation in the AIMP cast.
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